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ABSTRACT

The hydrodynamic phenomena occurring inside the enclosed downcomer
section of a plunging jet bubble column are described in this study.

The gas entrainment rate for a plunging liquid jet was found to consist
of two components, namely the gas trapped within the effective jet
diameter at the point of impact, and the gas contained within the film
between the jet and induction trumpet surface at the point of rupture.
Entrainment within the effective jet diameter has been examined by
McCarthy (1972). 1In this study, a model has been developed to predict
the rate of fiimwise entrainment. The model was supported by the
experimental results, provided the film attained a region of constant
thickness. When the induction trumpet was ruptured prior to a constant
film thickness being reached, the measured rate of filmwise entrainment
was higher than the prediction,

Filmwise entrainment was found to be initiated once a critical velocity
along the surface of the induction trumpet was reached. The critical
velocity was a function only of the liquid physical properties and was
independent of the jet conditions and downcomer diameter. The velocity
of the free surface of the induction trumpet was obtained from the
velocity profile for the recirculating eddy generated by the confined

plunging Tiquid jet.

The jet angle used to describes the expansion of the submerged jet inside
the downcomer was predicted from the radial diffusion of jet momentum
into the recirculating eddy. The model was able to predict the jet angle
when it was assumed that the radial diffusion of jet momentum was a
function of the Euler number based on the jet velocity and absolute

pressure in the headspace at the top of the downcomer.

The model was also developed to predict the maximum stable bubble
diameter generated within the submerged jet volume, where the energy
dissipation attributed to bubble breakup was given by the energy mixing
loss derived for the throat section of a ligquid-jet-gas-pump. Good
agreement was found between the measured and predicted maximum bubble



iti
diameter values. The average experimental Sauter mean/maximum diameter

ratio was found to be 0.61, which was similar to that for other bubble

generation devices.

it was found that for turbulent liquid conditions in the uniform two-
phase flow region, a transition from bubbly to churn-turbulent flow
occurred at a gas void fraction of approximately 0.2 when the gas drift-
flux was zero. Under laminar liquid flow, this transition took place at
a gas void fraction above 0.3,

For the bubbly flow regime the Distribution parameter Ceo used by Zuber
and Findlay (1965) to describe the velocity and gas void fraction
profile, was found to be a function of the liquid Reynolids number. For
laminar 1igquid flow, values of Co greater than unity were obtained. As
the 1iquid Reynolds number was increased it was found that Ce decreased,
until a constant value of unity was obtained for fully turbulent flow.

For the churn-turbulent regime it was found that the gas veoid fraction
measurements for all of the experimental runs could be collapsed onto a
single curve when a modified gas void fraction was plotted against the
gas-to-liquid volumetric flow ratio. The modified gas void fraction
tncluded a correction factor to account for the difference in the bubble
s1ip velocity between the experimental runs. The experimental results
also indicated that the value of the constant in the gas void fraction

correction factor was different for laminar and turbulent flow.

Prior to bubble coalescence, it was found that the experimental drift-
flux curves could be predicted from the measured bubble diameter, using
the separated flow model developed by Ishii and Zuber (1979). After the
onset of coalescence the drift flux measurements departed from the
original drift-flux curves at a rate which increased linearly with
increasing gas void fraction. It was found that the slope of the line
fitted to the coalesced region of the drift-flux curves increased with
increasing liguid Reynolds number and reached a constant value under
fully turbulent flow conditions.

The model developed, together with the implications of the experimental
results, are discussed with regard to optimising the design of an
industrial plunging jet bubble column.
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NOMENCLATURE

Area, (m?)

Cross-sectional area ratio, (Asj/Ac)
Distributicn parameter defined by (6.16)
Diameter, (m)

Dispersion coefficient, (mis-1)
Diameter, (m)

Energy dissipation rate, (kgm2s-3)
Energy dissipation, (kgm?s-2)
Force, (kgms-2)

Friction factor

Circulation strength, (s-1)
Acceleration due to gravity, (ms-2)

Total volumetric flux, (ms-1)

volumetric flux (or superficial velocity),

Frictional loss coefficient

Length, (m)

Momentum, (kgms=1)

Number

Pressure, (kgms~2)

Volumetric flowrate, (m¥s-1)

Radius, (m)

Radial co-ordinate, (m)

Surface roughness (defined in Figure 4.4),

Film thickness, (m)

Film thickness in constant film thickness region,

Time, (s)

Volume, (m3)

{ms=1)

(m)

1X



v Voltage, (volts)

Voo Linear velocity, (ms-1)

W Mass flowrate, (kgs-1)

y Length from column wall, (m)
2 Axial length, (m)

GREEK SYMBOLS

Submerged jet angle, (degrees)

Y Axis ratic, (length of maximum axis/length of minimum axis)
5] Dirac delta function

€ Gas void fraction

i) Energy transfer efficiency, (defined in 5.47)

8 Nczzle contraction angle, (degrees)

X Film thickness ratic, (defined in 4.32)

Absolute viscosity, (Pa-s)

v Kinematic viscosity, (m2s-%)
Q Packing parameter, (used in 6.50)
Density, (kgm=3)
o Surface tension, (Nm-1)
T Shear stress, (kgm-1s5-2)
o] Angle of inclination from horizental plane, (deagrees)
v Stream function
w Shear rate. (s 1)
SUPERSCRIPTS
x Dimensionless quantity

Drift gquantity



X1

SUBSCRIPTS

B Boundary laver

b Bubble

c Column

d Droplet

e Recirculating eddy
F Film

f Froth

G Gas

I Entrained gas component inside effective Jjet diameter
i Interface

J Jet

L Liquid

M Moiecular

MZ Mixing zone

m Mean

N Nozzle

o Orifice

p Pipe

r Radial

S slip

s Specific

T Turbulent

') Volume-surface, or Sauter mean
W Wall

z Axial



DIMENSIONLESS NUMBERS

We

Re

Ca

NH

Cr

Fr

New

Weber number,

Reynolds number,

Capillary number,

Hill number,

Crayer-Curtet number,

Froude number,

Euler number,

X111





